Programmed death ligand-1 is an endogenous pain inhibitor and silences mouse and human nociceptive neurons

Gang Chen1,2, Yong Ho Kim2, Hui Li3, Hao Luo2,3, Da-Lu Liu2, Zhi-Jun Zhang2, Mark Lay2, Wonseok Chang2, Yu-Qiu Zhang3*, & Ru-Rong Ji2,4*

1Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.

2Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710

3Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.

4Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710

*Correspondence should be addressed:
Email: ru-rong.ji@duke.edu; yuqiu.zhang@fudan.edu.cn

Abstract: Objective Mounting evidences suggests that cancers, such as melanoma express the checkpoint inhibitory protein PD-L1, which can suppress T cell function and induce immune tolerance via its receptor PD-1. However, it is unclear whether and how the PD-L1/PD-1 pathway can regulate pain sensitivity via non-immune modulation such as neuronal modulation. In this study, we assessed the expression and function of PD-1 in primary sensory neurons of mouse and human DRG. Methods Adult mice (males, 8-10 weeks) were used for behavioral and biochemical studies. Pd1 knockout mice with C57BL/6 background were purchased from the Jackson laboratory. Non-diseased human DRGs were obtained from donors through NDRI with permission of exemption from Duke IRB. Cell culture, models of pain and cancer, in situ hybridization, immunohistochemistry, ELISA, RT-PCR, Western blot, patch clamp recordings and behavioral analysis were used in this experiment. Results We find that PD-L1 is produced by melanoma and normal neural tissues including dorsal root ganglia (DRG) and acts as a
Intraplantar injection of PD-L1 evokes analgesia in naïve mice, whereas PD-L1 neutralization or PD-1 blockade induces mechanical allodynia. PD-1 activation in DRG nociceptive neurons by PD-L1 induces SHP-1 phosphorylation, inhibits sodium channels, and causes hyperpolarization through activation of TREK2 K+ channels. PD-L1 potently suppresses excitability of mouse and human DRG nociceptive neurons. Inoculation of B16 melanoma cells induces profound skin cancer lesion and increases serum PD-L1 levels but does not cause cancer pain. Remarkably, blocking PD-L1 or PD-1 elicits spontaneous pain and mechanical allodynia in melanoma-bearing hindpaw. **Conclusion** Our findings identify PD-L1 as a novel endogenous pain inhibitor that silences nociceptive neurons and masks melanoma-induced pain.

Keywords: Programmed death ligand-1, inhibit, pain, melanoma